NATO EPVAT testing
NATO EPVAT testing is one of the three recognized classes of procedures used in the world to control the safety and quality of firearms ammunition.
Beside this, there are also the C.I.P. class of procedures and the SAAMI class of procedures.
EPVAT Testing is described in unclassified documents by NATO, more precisely by the AC/225 Army Armaments Group (NAAG).[1]
EPVAT is an abbreviation for "Electronic Pressure Velocity and Action Time". This is a comprehensive procedure for testing ammunition using state-of-the-art instruments and computers. The procedure itself is described in NATO document AC/225 (Com. III/SC.1)D/200.
Unlike the C.I.P. procedures aiming only at the user's safety, the NATO procedures for ammunition testing also includes comprehensive functional quality testing in relation with the intended use. That is, not only the soldier's safety is looked at, but also his capacity to incapacitate the enemy. As a result, for every ammunition order by NATO, a complete acceptance approval on both safety and functionality is performed by both NATO and the relevant ammunition manufacturers in a contradictory fashion.
For this, a highly accurate and indisputable protocol has been defined by NATO experts using a system of reference cartridges.[1][2][3]
The civilian organisations C.I.P. and SAAMI use less comprehensive test procedures than NATO, but NATO test centres have the advantage that only a few chamberings are in military use. The C.I.P. and SAAMI proof houses must be capable of testing hundreds of different chamberings requiring lots of different test barrels, etc..
Contents |
[edit] NATO Reference cartridges system
In this system, the ammunition manufacturers, in close cooperation with NATO, have set aside a batch (also termed "lot") of ammunition they consider to be of very good quality and representative of ammunition that should be delivered to the armies in the next following years. This batch is maintained at approved NATO test centres and distributed to the manufacturers involved. When a new batch (lot) is delivered, a set of 20 reference cartridges are fired to see how they behave with the local equipment and with the current atmospheric conditions. Results are then compared to the reference values as maintained by the NATO and correctors (delta values) are computed. Then, the current batch (lot) of ammunition is fired and the correctors are applied on the measured value giving a result "comparable" to the reference itself.
This test is performed under normal conditions but also by simulating extreme polar or desert conditions using special cooling equipment and ovens to cool or heat the tested ammunition to the appropriate temperatures.[4][5]
[edit] Proofing
The minimum proof and performance requirements for small arms ammunition of NATO calibres are covered in STANAGs as follows:
- 5.56 mm. STANAG 4172 and NATO Manual of Proof and Inspection AC/225 (LG/3-SG/1) D/8.
- 7.62 mm. STANAG 2310 and NATO Manual of Proof and Inspection AC/225 (LG/3-SG/1) D/9.
- 9 mm. STANAG 4090 and NATO Manual of Proof and Inspection AC/225 (P111-SP1) D/170(REV).
- 12.7 mm. STANAG 4383 and NATO Manual of Proof and Inspection AC/225 (LG/3-SG/1) D/11.
Each weapon and component considered vulnerable to the effects of a rapid change in pressure, for example barrels, breech blocks and bolts, will be tested by firing one dry round at a corrected minimum of 25% over pressure and one oiled round at a corrected minimum of 25% over pressure. 25% over pressure means 25% in excess of the Service Pressure (Pmax). The Service Pressure is defined as the mean pressure generated by the Service Cartridge at a temperature of 21°C. Such a high pressure proof is conducted with both the weapon and ammunition conditioned to an ambient temperature of 21°C.
Each weapon will be individually tested, from an ammunition lot that produces a minimum corrected mean chamber pressure in accordance with the table below:[1]
Calibre | Specific Weapon Detail | Service Pressure Pmax (MPa / (psi)) | Proof Round Pressure Requirement (MPa / (psi)) | Detailed Requirement for Proof Ammunition |
5.56 mm (5.56x45mm NATO) | Designed to chamber NATO ammunition | 430.0 / (62,366) | 537.5 / (77,958) | Pressure recorded in NATO design EPVAT Barrel with Kistler 6215 Transducer[6] or by equipment to Commission Internationale Permanente pour l’épreuve des Armes á Feu Portatives (C.I.P.) requirements |
7.62 mm (7.62x51mm NATO) | Designed to chamber NATO ammunition | 415.0 / (60,190) | 519.0 / (75,275) | Pressure recorded in NATO design EPVAT Barrel with Kistler 6215 Transducer or by equipment to C.I.P. requirements |
9 mm (9x19mm NATO) | Designed to chamber NATO ammunition | 252.0 / (36,550) | 315.0 / (45,687) | Pressure recorded in C.I.P. design barrel at mid case position |
12.7 mm (12.7x99mm NATO) | Designed to chamber NATO ammunition | 417.0 / (60,481) | 521.3 / (75,608) | Pressure recorded in NATO design EPVAT Barrel with Kistler 6215 Transducer or by equipment to C.I.P. requirements |
All other small arms ammunition for use in "non-NATO Chamber" weapons | As defined by the current C.I.P. legislation. | As defined by the current C.I.P. legislation. |
The above proof round pressure requirements for the 9 mm and 12.7 mm rounds established by the British Ministry of Defence are higher than the current (2008) C.I.P. proof round pressure requirement legislation for the civilian equivalent 9mm Parabellum (C.I.P. Pmax rating 235 MPA / (34,083 psi) and .50 Browning (C.I.P. Pmax rating 370 MPA / (53,663 psi) rounds.[7] The 9x19mm NATO round can be regarded as overpressure ammunition
[edit] Testing equipment providers
The following companies provide equipment to the NATO armies to perform this type of testing: (inexhaustive list)
- Deby Engineering (Belgium)
- DRELLO GmbH (Germany)
- HPI (Austria)
- Kistler International
- MS Instruments (England)
- Prototypa (Czech Republic)
- Sabre (England)
- Stas (Italy)
[edit] See also
[edit] References
- ↑ 1.0 1.1 1.2 Proof of Ordnance, Munitions, Armour and Explosives, Ministry of Defence Defence Standard 05-101 Part 1
- ↑ Proof of Ordnance, Munitions, Armour and Explosives, Ministry of Defence Defence Standard 05-101 Part 2
- ↑ Proof of Ordnance, Munitions, Armour and Explosives, Ministry of Defence Defence Standard 05-101 Part 3
- ↑ Proof of Ordnance, Munitions, Armour and Explosives, Ministry of Defence Defence Standard 05-101 Part 3
- ↑ NATO Small Arms Ammunition Interchangeability via Direct Evidence Testing
- ↑ Defining Parameters for Ballistic High Pressure Sensors
- ↑ C.I.P. decisions, texts and tables (free current C.I.P. CD-ROM version download (ZIP and RAR format))
- Proof of Ordnance, Munitions, Armour and Explosives, Ministry of Defence Defence Standard 05-101 Part 1 – Requirements
- Proof of Ordnance, Munitions, Armour and Explosives, Ministry of Defence Defence Standard 05-101 Part 2 – Guidance
- Proof of Ordnance, Munitions, Armour and Explosives, Ministry of Defence Defence Standard 05-101 Part 3 – Statistical Methods for Proof
- NATO Small Arms Ammunition Interchangeability via Direct Evidence Testing
- C.I.P. decisions, texts and tables (free current C.I.P. CD-ROM version download (ZIP and RAR format))
[edit] External links
- Army Armaments Group (NAAG)
- C.I.P. decisions, texts and tables (free current C.I.P. CD-ROM version download (ZIP and RAR format))
- Thales brochure on 5.56mm F1 ball ammunition conforming to the design parameters of the NATO STANAG 4172 and tested with Kistler 6215 transducers at different temperatures
- THE ANALYSIS OF APPLICATION AND REQUIREMENTS SMALL CALIBER REFERENCE AMMUNITION AND POLISH ACHIEVEMENT IN THE FIELD OF WORKING OUT NATIONAL REFERENCE AMMUNITION
|